

IWA YOUNG WATER PROFESSIONALS BUILDING BRIDGES ONLINE EVENT SERIES

Wastewater Reuse In AgricultureTuesday, 22 Nov '222 PM (Central European Time)

JW

Klare Konzepte. Saubere Umwelt

AGENDA (Duration 1.5 hrs)

- . 15' Introduction
- . 15' Guest Speaker Italy: Luca Pensirini (Politecnico di Milano)
- . 15' Guest Speaker Germany: Max Zimmermann (RWTH Aachen)
- . 45' Networking Discussion

info@ywp-germany.com international@junge-dwa.de

YOUNG WATER

PROFESSIONALS

ITALY

water association

ywpitaly@gmail.com

IWA YOUNG WATER PROFESSIONALS BUILDING BRIDGES ONLINE EVENT SERIES

Tell us about yourself! LINK VOXR: <u>https://voxr.com/dwa</u>

QUESTION 1

What sector are you currently in?

JWA

Klare Konzepte. Saubere Umwelt.

MULTIPLE CHOICE

- A. Academia,
- B. Industry,
- C. Policy/Government,
- D. Research,
- E. Engineering Consultancy/Design,
- F. Other

YOUNG WATER

PROFESSIONALS

ITALY

the international

water association

info@ywp-germany.com international@junge-dwa.de

ywpitaly@gmail.com

BUILDING BRIDGES ONLINE EVENTS

Concept in a nutshell

- International Roundtables part of IWA endorsed Building Bridges Online Event Series
- Regular get-togethers connecting YWP across the globe in bilateral dialogue
- Platform to network and engage over a topic relevant to both countries
- Platform empowering YWP to present insights and to learn from peers

INTRODUCING OURSELVES!

JUNGE DWA (YOUNG DWA)

Connect - Roundtables

Exchange - Network Meetings

Grow - Circles & Inclusion

international@junge-dwa.de

https://en.dwa.de/en/jungedwa.html

XING-Gruppe > JungeDWA

INTRODUCING OURSELVES!

IWA YWP GERMANY (YWPGER)

We connect (young) water professionals in Germany with the world, and the world with Germany.

- Organisation of roundtables & network events
- **Publications** (national & international)
- **Representing** GER abroad within IWA events and at international conferences
- **Connecting** with other IWA chapters

info@ywp-germany.com

https://ywp-germany.com/

https://www.linkedin.com/company/ywp-germany/

INTRODUCING OURSELVES!

IWA YWP ITALY

- Born in February 2022
- Aims to connect and empower YWPs from academia and industry
- Organizes several activities for networking and professional growth within YWPIT and with other chapters
- Future activities include:
 - Mentoring
 - Webinars
 - YWP meetup in Milan (June 2023)

Global Coordination Call 30/03/2022

Call with YWP-Sweden 09/05/2022

YWPIT in numbers

Let's keep in touch!

Email: ywpitaly@gmail.com

LinkedIn: Young Water Professionals Italy

Twitter: @ItalyYwp

GUEST SPEAKER YWP ITALY

PhD Student, Politecnico di Milano

WW reuse in agriculture impacts

SW

WW reuse in agriculture impacts

POLITECNICO MILANO 1863

BACKGROUND

WW reuse in agriculture impacts

Risk assessment as a preventive approach

Drinking Water Directive

23.12.2020 EN	Official Journal of the European Union	L 435/1			
DIRECTIVE (EU) 2020/2184	OF THE EUROPEAN PARLIAMENT AND OF THE C	OUNCIL			
of 16 December 2020					
on the quality of water intended for human consumption					
(recast)					

Water Reuse Regulation

L 177/32	EN	Official Journal of the European Union	5.6.2020
	REGULATIO	ON (EU) 2020/741 OF THE EUROPEAN PARLIAMENT AND OF THE COUNC	IL I
		of 25 May 2020	
		on minimum requirements for water reuse	

Risk assessment as a preventive approach

Drinking Water Directive

23.12.2020 El	I Official Journal of the European Union	L 435/1
DIRI	CTIVE (EU) 2020/2184 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL	
	of 16 December 2020	
	on the quality of water intended for human consumption	
	(recast)	

Water Reuse Regulation

L 177/32	EN	Official Journal of the European Union	5.6.2020
	REGULATIC	N (EU) 2020/741 OF THE EUROPEAN PARLIAMENT AND OF THE COU	NCIL
		of 25 May 2020	
		on minimum requirements for water reuse	

Need for a risk-based framework for

the integrated evaluation of WW

reuse practices' impacts

Risk assessment procedures

Different risk assessment approaches available

J.	Environmental Risk (RQ)				
Å%	Human Health Risk (HI)				
	Microbials — Acute effects (DALY)				
	Chemicals → Chronic effects (BQ)				
	Deterministic approach (CRA)	_			
	Probabilistic approach (QMRA, QCRA)				

RISK ASSESSMENT PROCEDURES QMRA for human health

Treatment scenario: active UV disinfection

Exposed population: workers in agriculture

RISK ASSESSMENT PROCEDURES QMRA for human health

33% UV dose

RISK ASSESSMENT PROCEDURES

Conceptual model: mechanistic fate models from the sewer to the crops

Exposed population:

crops' consumers

RISK ASSESSMENT PROCEDURES

* ເຈັ Chemical Risk Assessment for human health and environment

Conceptual model: mechanistic fate models from the sewer to the crops

Negative impacts Human risk imposed Human risk

Environmental risk

CEC	Max/Median/Min				Mo	nthly fre	equency	ofexce	edance	(%)			
CEC	RQ	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
RQ above 0.1													
SMX													
	0.42/0.16/0.018	74.1	73.9	73.5	73.5	73.4	72.7	72.4	72.6	73.7	73.9	74.2	74.1
IBU													
	0.15/0.07/0.021	16.9	16.7	16.5	16.4	16.3	15.9	15.8	15.9	16.2	16.4	16.7	16.8
E1													
	0.25/0.14/0.046	91.7	91.5	91.3	90.8	90.5	89.2	88.4	88.8	90.6	91.2	91.5	91.7

Human health risk

ECs	Rice		Wheat		Total	
	Median	P97.5	Median	P97.5	Median	P97.5
Infants						
SMX DCF IBU PAR CBZ FUR EE2 E2 E2 E1 PFOS	2.94E-03 2.66E-06 1.12E-09 7.12E-07 2.62E-03 5.37E-08 2.77E-02 1.07E-05 5.23E-04 6.98E-06	2.03E-02 6.35E-04 5.27E-07 1.05E-06 3.91E-03 8.49E-05 2.57E-01 2.53E-05 4.82E-03 2.75E-04	1.86E-04 6.14E-08 1.21E-10 5.64E-08 2.21E-03 1.25E-07 1.95E-03 8.72E-07 4.06E-05 5.44E-06	1.58E-03 1.26E-05 5.94E-08 9.08E-08 2.80E-03 9.82E-05 3.85E-02 2.02E-06 7.80E-04 1.24E-04	3.12E-03 2.72E-06 1.24E-09 7.69E-07 4.84E-03 1.79E-07 2.97E-02 1.15E-05 5.63E-04 1.24E-05	2.19E-02 6.48E-04 5.86E-07 1.14E-06 6.71E-03 1.83E-04 2.95E-01 2.73E-05 5.60E-03 4.00E-04
PFOA TCS	2.23E-08 6.19E-09	1.22E-04 1.79E-08	1.17E-06 2.57E-09	2.66E-04 1.04E-08	1.19E-06 8.76E-09	3.88E-04 2.83E-08
			Hazard Inc	lex	3.82E-02	3.31E-01

RISK ASSESSMENT PROCEDURES

Chemical Risk Assessment for human health and

MODELS FOR WW REUSE IMPACTS' EVALUATION

Case studies

MIND THE GAP

How to prioritize in which WWTPs implement WW reuse? Based on which criteria?

Ranking of characteristics related to WWTPs and their nearby territory to determine where to implement WW reuse practices

inspiring change

How?

What is the contribution of WW irrigated crops'

consumption compared to other sources of risk?

NEGATIVE IMPACTS MODEL

Health risk apportionment

NEGATIVE IMPACTS MODEL

Health risk apportionment

What is the contribution of WW irrigated crops' consumption compared to other sources of risk?

NEGATIVE IMPACTS MODEL Health risk apportionment

Tap water Food – Cereals

Food - Fruits and Vegetables

- Health risk due to NP is not negligible, but BPA risk is significantly higher
- Crops' food intake is the main alkylphenols exposure
 - source compared to tap water

NEGATIVE IMPACTS MODEL

Mitigation measures

NEGATIVE IMPACTS MODEL

Mitigation measures

FURTHER DEVELOPMENTS Next steps

Development of a univocal framework to uniform the risk assessment procedures to comply with the most recent regulation

Integration and combination of the different risk assessment approaches

> Integration and combination of positive and negative impact models

THANK YOU FOR YOUR ATTENTION!

GUEST SPEAKER YWP GERMANY

MAX ZIMMERMANN

PhD Student, RWTH Aachen

Agricultural water reuse in Germany:

Insights into FlexTreat

M.Sc. Max Zimmermann

Prof. Dr. Thomas Wintgens Dr. Benedikt Aumeier (Group Leader Water Reuse)

Context: Drought in Germany and Europe

FlexTreat

Helmholtz UFZ Droughtmonitor (2021)

Water Reuse in Europe

FlexTreat

FlexTreat

EU Ordinance 2020/741

- Quality classes
- Quality requirements

Table 1 – Classes of reclaimed water quality and permitted agricultural use and irrigation method

Minimum reclaimed water quality class	Crop category (*)	Irrigation method
А	All food crops consumed raw where the edible part is in direct contact with reclaimed water and root crops consumed raw	All irrigation methods
В	Food crops consumed raw where the edible part is produced above ground and is not in direct contact with reclaimed water, processed food crops and non-food crops including crops used to feed milk- or meat-producing animals	All irrigation methods
С	Food crops consumed raw where the edible part is produced above ground and is not in direct contact with reclaimed water, processed food crops and non-food crops including crops used to feed milk- or meat-producing animals	Drip irrigation (**) or other irrigation method that avoids direct contact with the edible part of the crop
D	Industrial, energy and seeded crops	All irrigation methods (***)

Table 2 - Reclaimed water quality requirements for agricultural irrigation

De alaime d'annéan			Quality requirements					
quality class	Indicative technology target	E. coli (number/100 ml)	BOD₅ (mg/l)	TSS (mg/l)	Turbidity (NTU)	Other		
А	Secondary treatment, filtration, and disinfection	≤ 10	≤ 10	≤ 10	≤ 5	Legionella spp.: < 1 000 cfu/l where there is a risk of aerosolisation		
В	Secondary treatment, and disinfection	≤ 100	In accordance with	In accordance with	-	egg/l for irrigation of pastures or forage		
С	Secondary treatment, and disinfection	≤ 1 000	Directive 91/271/EEC	Directive 91/271/EEC	-			
D	Secondary treatment, and disinfection	≤ 10 000	(Annex I, Table 1)	(Annex I, Table 1)	-			

SPONSORED BY THE

An Initiative of the Federal Ministry of Education and Research Water Technologies: Reuse

Flexible und reliable concepts for sustainable water reuse in agriculture

Project goals

FlexTreat

Work packages:

- Innovative advanced treatment chains
 Synergies with stages for organic micropollutant removal
- 2. Digital Green Tech
 - Innovative process control concepts / Digital Twin
- 3. Risk Management and Integrated Evaluation
 - Water quality, health risks, system resilience, economical and ecological dimensions
- 4. Pro-active implementation of project outcomes

Context Goals:

- "Guideline risk management" for EU Ordinance
- Guideline "Technologies for save water reuse"

FlexTreat

Extension of *Best Available Technologies* (BAT) for agricultural water reuse

Optimization of PAC + UF Processes

Micropollutant removal (in PAC + UF stage only)							
	PAC Size	Contact Time	Removal**				
Ulm Process*	D ₅₀ = 28µm	60 min	77 %				
Inline Process*	D ₅₀ = 5µm	60 sec	72 %				

* no PAC recirculation to CASP

**according to KomS-BW 2018

Zimmermann et al. in preparation

FlexTreat

Risk Management

FlexTreat

Stakeholder dialogue

- Farmers / Chamber of Agriculture
- Operators/water companies
- Federal Environment Agency

Case studies (for potential market expansion)

- Spain
 - Murcia
 - Talavera
- Egypt
- Bahrain

SPONSORED BY THE

Thank you for your attention!

www.flextreat.de

Name: Mail: Tel.:

Max Zimmermann <u>zimmermann@isa.rwth-aachen.de</u> +49 241 80 25535 IWA YOUNG WATER PROFESSIONALS BUILDING BRIDGES ONLINE EVENT SERIES

SESSION FEEDBACK

QUESTION 2 Presentations! Which word stuck with you the most?

Link VOXR: https://voxr.com/dwa

SESSION FEEDBACK

Results

What sector are you in currently?

SESSION FEEDBACK

Results

Which words stuck?

inspiring change

VOXR

IWA YOUNG WATER PROFESSIONALS BUILDING BRIDGES ONLINE EVENT SERIES

THANK YOU FOR YOUR PARTICIPATION

USE NEXT SLIDE AS PROMO FLYER

IWA YOUNG WATER PROFESSIONALS BUILDING BRIDGES ONLINE EVENT SERIES

Wastewater Reuse In Agriculture Tuesday, 22 Nov '22 2 PM (Central European Time)

IJW

Klare Konzepte. Saubere Umwelt

Join via GoToMeeting!

https://meet.goto.com/800060645

AGENDA (Duration 1.5 hrs)

- . 15' Introduction
- . 15' Guest Speaker Italy: Luca Penserini (Politecnico di Milano)
- . 15' Guest Speaker Germany: Max Zimmermann (RWTH Aachen)
- . 45' Networking Discussion

YOUNG WATER

ITALY

water association

PROFESSIONALS

info@ywp-germany.com international@junge-dwa.de

ywpitaly@gmail.com